
Solar Eclipse Observation: My Experience

Jan Sladecek

SEC 2014, 23 rd October, NSO at Sacramento Peak Czech Republic, Prague, e-mail: sladeclipse@seznam.cz

Solar Eclipse Observation: My Experience

- Solar Eclipse, especially <u>Total Solar Eclipse</u> is the beautiful natural phenomenon, when there is visible the external layer of Solar Atmosphere - <u>Corona</u>.
- I have observed also Annular Solar Eclipse, Transits
 of planets Mercury and Venus across the Solar Disc,
 Total Lunar Eclipse, but my great interest is the <u>Total</u>
 <u>Solar Eclipse and visible Corona</u>.

Solar Eclipse Observation: My Experience

- My interest in the astronomy started in 1980.
- I studied geography, within geo. I studied meteorology and environment. I visited the lectures of astronomy.
- I graduated in 1986 and started to work at the Czech
 Hydrometeorological Institute of Air Quality Department.
- Since 1991 I have been member of CAS
- In 90th year my main interest was planetology and astronautics.
- Since 1999 I have started to observe Total Solar Eclipse.

Solar Eclipse Observation: My Experience TSE (HSE)

- 1. 1999 Germany, fiasco, total cloud eclipse!
- 2. 2001 Zambia, first success! Solar Corona, video; Victoria Falls
- 3. 2002 SA, cloudy, half success, video; Krüger N.P.
 - 2003 Antarctica, my plan failed, skip
- 4. 2005 Pacific Ocean, success, video, first photos, Easter Island
- 5. 2006 Egypt, success, first serie of pictures, video; Asuan
- 6. 2008 Mongolia, success, scientific team, pictures, processing
- 7. 2009 China, unsuccess but good third contact
- 8. 2010 French Polynesia, Hikureu, unsuc., "bitter beads"; Moorea
- 9. 2012 Australia, success, pictures, processing; N.Z.
- 10. 2013 Uganda, chromosphere, pictures, processing

Solar Eclipse Observation: My Experience ASE, PSE, Transits, SEC

- 1. 2005 ASE Tunisia, success, video
- 2. / 2006 ASE French Guiana, success, pictures; ESA centre
- 3. 2012 ASE USA, success, pictures (part of chromosphere); Grand Canyon
- 1. 1975 PSE CR, success
- 2. 2003 PSE CR, success, video
- 3. 2009 PSE SA, success, Tsitsikama N.P., pict.; SAAO, SALT; cape of g.h.
- 4. 2011 PSE CR, success, Strahov, pictures
- 5. 2014 PSE USA, N.S.O. at Sacramento Peak
- 1. 2003 TPM CR, success, Brno observatory
- 2. 2004 TPV CR, success, Prague observatory, video, pictures
- 3. 2012 TPV CR, success, Prague observatory, pictures
- 1. 2004 SEC UK, Open University Milton Keynes; poster
- 2. 2007 SEC USA, Cal., Griffith Observatory, Mt. Wilson Ob.; poster 2010 SEC India, unsuitable date, skip
- 3. 2014 SEC USA, N.M., Coudcroft, Sacramento P.O.; presentation, poster

Solar Eclipse Observation: My Experience

- In the period 1999-2005 I specialized on the observation Solar Corona and recording by camcorder.
- Since 2005 I have started to photograph Solar Corona by camera
- I participated in the international scientific expedition to Mongolia to TSE 2008. My camera was on great parallactic mount and I could concentrate on the observation of Solar Corona.
- Since 2009 to this time I use parallactic mount with drive, optimal cameras and direction laptop, for later processing.

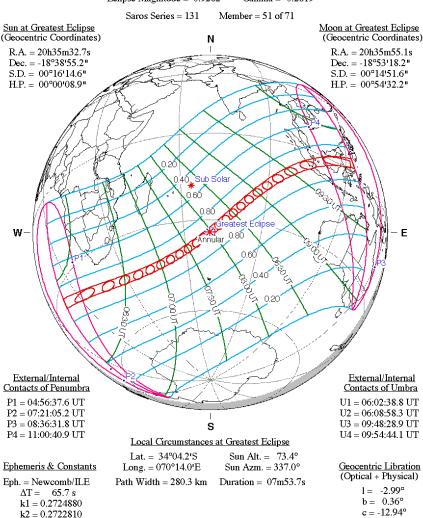
Solar Eclipse Observation: My Experience

- The choice of the position for the Solar Eclipse observation is important from the point of view of security, and weather forecast.
- I travel to TSE (ASE) around the world.
- My last two journeys, Australia 2012 and Uganda 2013, were successful.
- Especially in 2013, our international team took the pictures of Solar Corona for later processing by Miloslav Druckmüller from Technical University of Brno in CR.
- Miloslav and his daughter Hana are the great experts for mathematical processing of images.

Solar Eclipse Observation: My Experience PSE

- 2009 partial phase of ASE SA, success, pictures;
 main destination: visit to SAAO, SALT
- 2011 PSE CR, Prague, success, pictures
- 2014 PSE USA, NSO at Sacramento Peak

SAAO Sutherland, SALT



Annular Solar Eclipse of 2009 Jan 26

Geocentric Conjunction = 07:46:24.8 UT J.D. = 2454857.823898 Greatest Eclipse = 07:58:39.0 UT J.D. = 2454857.832395

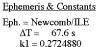
Eclipse Magnitude = 0.9282

Gamma = -0.2819

Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html

1000 2000 3000 4000 5000


 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

Partial Solar Eclipse of 2011 Jan 04

Geocentric Conjunction = 09:15:12.3 UT J.D. = 2455565.885559 Greatest Eclipse = 08:50:34.0 UT J.D. = 2455565.868449

Eclipse Magnitude = 0.8572 Gamma = 1.0628

Saros Series = 151 Member = 14 of 72Sun at Greatest Eclipse Moon at Greatest Eclipse (Geocentric Coordinates) (Geocentric Coordinates) R.A. = 18h59m14.8sR.A. = 18h58m23.7s $Dec. = -22^{\circ}44^{\circ}21.3^{\circ}$ $Dec. = -21^{\circ}46^{\circ}01.0^{\circ}$ $S.D. = 00^{\circ}16'15.9"$ $S.D. = 00^{\circ}15'18.1"$ $H.P. = 00^{\circ}00^{\circ}08.9^{\circ}$ $H.P. = 00^{\circ}56^{\circ}09.6^{\circ}$ Sub Solar External/Internal Contacts of Penumbra P1 = 06:40:11.1 UTP4 = 11:00:52.2 UTS

k1 = 0.2724880k2 = 0.2722810

 $\Delta b = 0.0^{\circ} \Delta l = 0.0^{\circ}$

0 1000 2000 3000 4000 5000 Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html Geocentric Libration (Optical + Physical)


> $1 = 4.62^{\circ}$ $b = -1.33^{\circ}$

> $c = -4.25^{\circ}$

Brown Lun. No. = 1089

Brown Lun. No. = 1065

Partial Phase of Annular Solar Eclipse 26 Jan, 2009

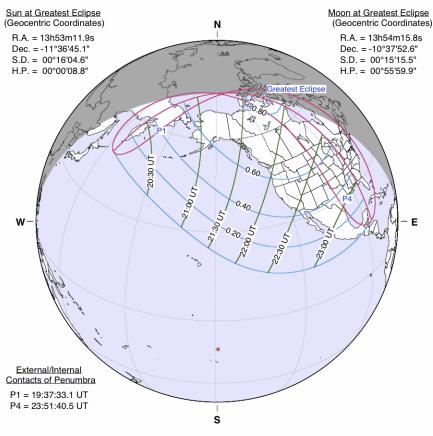
Tsitsikamma National Park SA, 05:15 - 07:45 UT Canon EOS 350D, Sigma MF 600/8

Jan Sladecek CR

Jan Sladecek

Canon EOS 350D, Sigma MF 600/8

PSE 2011



Partial Solar Eclipse of 2014 Oct 23

Ecliptic Conjunction = 21:57:47.2 TD (= 21:56:39.8 UT) Greatest Eclipse = 21:45:39.2 TD (= 21:44:31.7 UT)

Eclipse Magnitude = 0.8114 Gamma = 1.0908

Saros Series = 153 Member = 9 of 70

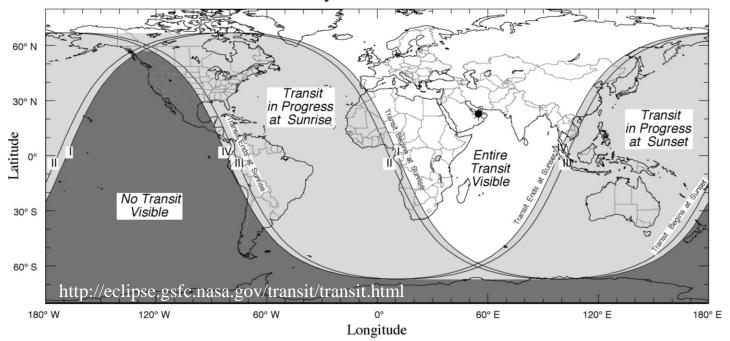
Constants & Ephemeris

 $\begin{array}{rcl} \Delta T = & 67.5 \text{ s} \\ \text{k1} = 0.2725076 \\ \text{k2} = 0.2722810 \\ \Delta b = & 0.0^{\text{\tiny II}} \quad \Delta I = & 0.0^{\text{\tiny II}} \\ \text{Eph.} = \text{JPL DE405} \end{array}$

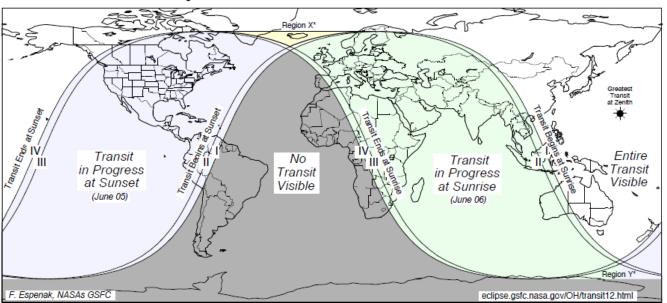
0 1000 2000 3000 4000 5000 Kilometers Geocentric Libration (Optical + Physical)

> l = -4.52° b = -1.28°

 $c = 21.96^{\circ}$


Brown Lun. No. = 1136

F. Espenak, NASA's GSFC eclipse.gsfc.nasa.gov 2014 Feb 22


Solar Eclipse Observation: My Experience Transits, ASE

- 2004 TPV CR, success, Prague observatory, video
- 2012 TPV CR, success, Prague observatory, pictures
- 2006 ASE French Guiana, success, pictures; ESA
- 2012 ASE USA, success, pictures

World Visibility of 2004 Transit of Venus

Global Visibility of the Transit of Venus of 2012 June 05/06

^{*} Region X - Beginning and end of Transit are visible, but the Sun sets for a short period around maximum transit.

^{*} Region Y - Beginning and end of Transit are NOT visible, but the Sun rises for a short period around maximum transit.

2004 and 2012 Transits of Venus

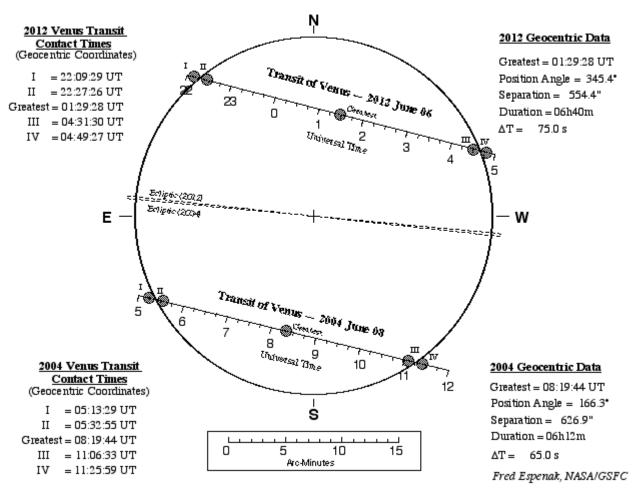
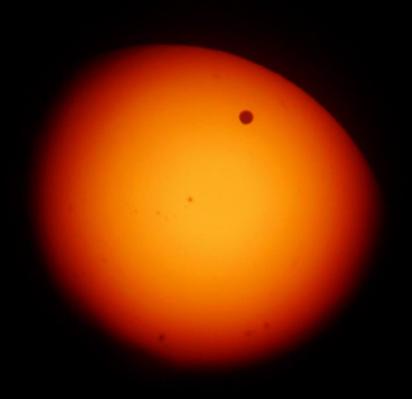
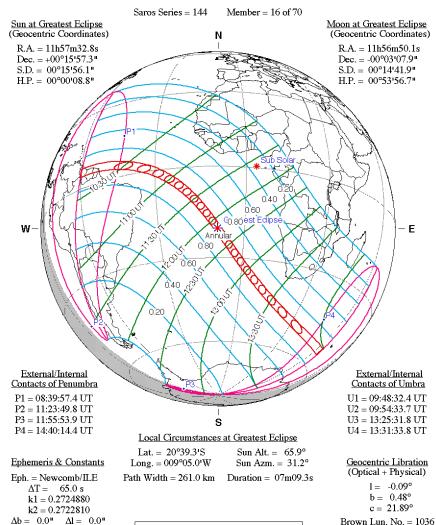



Figure 1 - Path of Venus across the Sun's disk on 2004 June 08 and 2012 June 06

Transit planet Venus across Solar Disc 2012

Transit planet Venus across Solar Disc 2012

CNES/ESA Space centre, French Guiana, Kourou



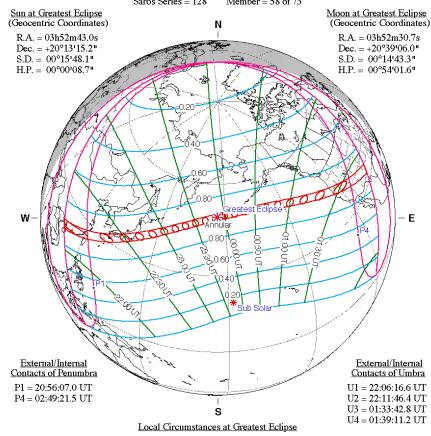
Annular Solar Eclipse of 2006 Sep 22

Geocentric Conjunction = 12:07:11.4 UT J.D. = 2454001.004993 Greatest Eclipse = 11:40:11.3 UT J.D. = 2454000.986242

Eclipse Magnitude = 0.9352

Gamma = -0.4064

Kilometers F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html


1000 2000 3000 4000 5000

Annular Solar Eclipse of 2012 May 20

Geocentric Conjunction = 23:59:09.1 UT J.D. = 2456068.499411 Greatest Eclipse = 23:52:46.6 UT J.D. = 2456068.494984

> Eclipse Magnitude = 0.9439 Gamma = 0.4827

> > Saros Series = 128 Member = 58 of 73

 $Lat. = 49^{\circ}05.3^{\circ}N$ Sun Alt. = 60.9° Long. = $176^{\circ}16.8^{\circ}E$ Sun Azm. = 171.0° Path Width = 236.9 km Duration = 05m46.4s

1000 2000 3000 4000 5000 Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html Geocentric Libration (Optical + Physical)

> $1 = -1.29^{\circ}$ $b = -0.58^{\circ}$

 $c = -13.67^{\circ}$

Brown Lun. No. = 1106

Ephemeris & Constants

Eph. = Newcomb/ILE

 $\Delta T = 69.0 \text{ s}$

k1 = 0.2724880

k2 = 0.2722810

 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

ASE 2006 French Guiana, Kourou

ASE 2012 USA, Nevada, Overton, near Las Vegas

ASE 2006 French Guiana, Kourou

ASE 2012 USA, Nevada, Overton

Total Solar Eclipse of 2001 Jun 21

Geocentric Conjunction = 11:57:53.7 UT J.D. = 2452081.998538 Greatest Eclipse = 12:03:45.9 UT J.D. = 2452082.002614

Eclipse Magnitude = 1.0495

Gamma = -0.5701

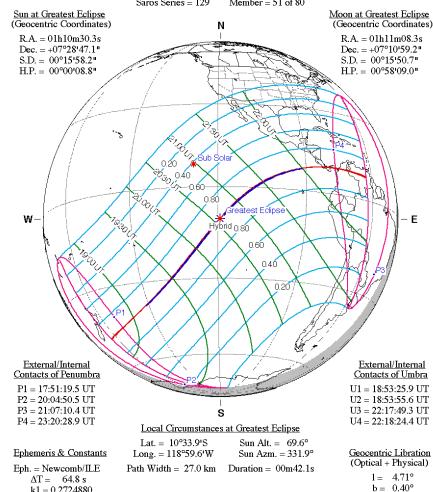
Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2,

sunearth.gsfc.nasa.gov/eclipse/eclipse.html

2000 3000 4000 5000

k2 = 0.2722810


 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

Hybrid Solar Eclipse of 2005 Apr 08

Geocentric Conjunction = 20:15:41.4 UT J.D. = 2453469.344230 Greatest Eclipse = 20:35:47.3 UT J.D. = 2453469.358186

> Eclipse Magnitude = 1.0074 Gamma = -0.3473

Saros Series = 129 Member = 51 of 80

k1 = 0.2724880

k2 = 0.2722810

 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

1000 2000 3000 4000 5000 Kilometers

 $c = -20.73^{\circ}$

Brown Lun. No. = 1018

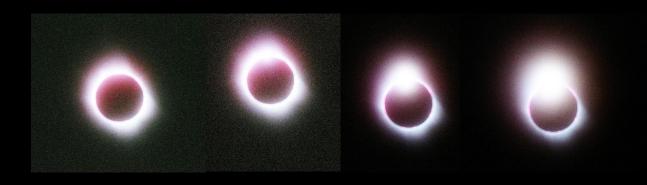
F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html

 $c = 1.61^{\circ}$

Brown Lun. No. = 971

TSE 2001 Zambia, North Kafue N.P.

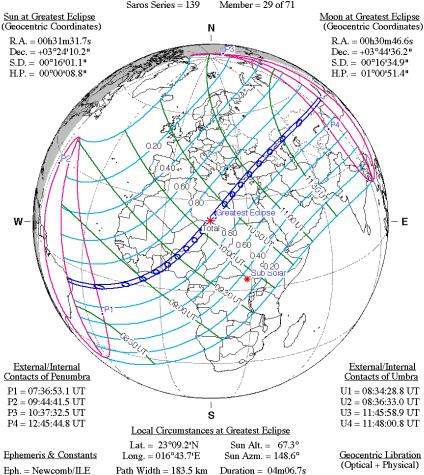
TSE 2001 Zambia, North Kafue N.P.



HSE 2005 Pacific Ocean, near Pitcairn island

HSE 2005 Pacific Ocean, near Pitcairn island

HSE 2005 Pacific Ocean, near Pitcairn island



Total Solar Eclipse of 2006 Mar 29

Geocentric Conjunction = 10:33:21.8 UT J.D. = 2453823.939836 Greatest Eclipse = 10:11:22.1 UT J.D. = 2453823.924561

> Eclipse Magnitude = 1.0515 Gamma = 0.3843

Saros Series = 139 Member = 29 of 71

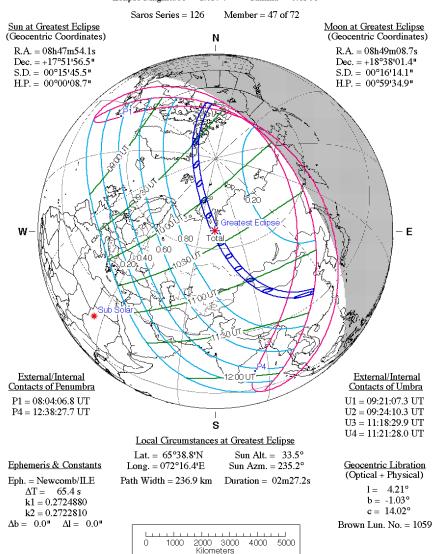
Path Width = 183.5 km Duration = 04m06.7s

 $\Delta T = 64.9 \text{ s}$

k1 = 0.2724880

k2 = 0.2722810

 $\Delta b = 0.0$ " $\Delta l = 0.0$ "


1000 2000 3000 4000 5000 Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html

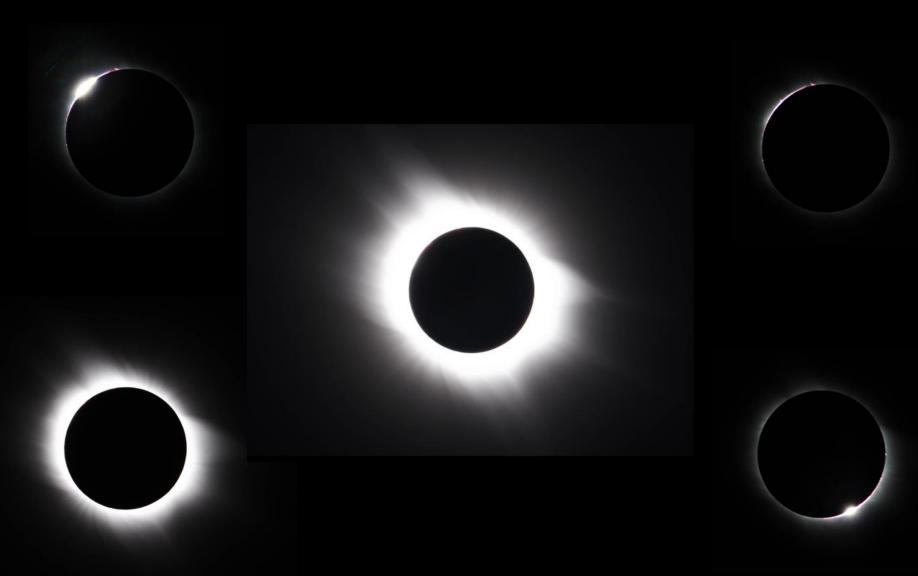
Total Solar Eclipse of 2008 Aug 01

Geocentric Conjunction = 09:47:22.9 UT J.D. = 2454679.907903 Greatest Eclipse = 10:21:08.1 UT J.D. = 2454679.931343

> Eclipse Magnitude = 1.0394 Gamma = 0.8306

F. Espenak, NASA's GSFC - Fri, Jul 2,

sunearth.gsfc.nasa.gov/eclipse/eclipse.html

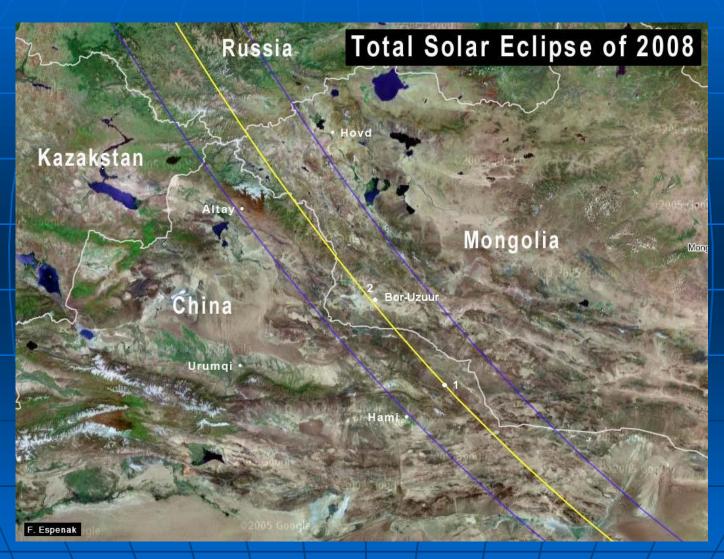

 $1 = 2.19^{\circ}$

 $b = -0.52^{\circ}$

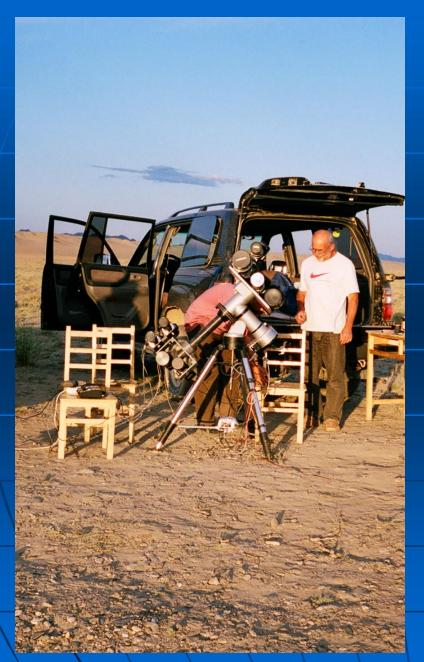
 $c = -21.71^{\circ}$

Brown Lun. No. = 1030

TSE 2006 Egypt, As Sallum



Canon EOS 350D, Sigma MF 600/8


TSE 2006 Egypt, As Sallum

TSE 2008 Mongolia


TSE 2008 Mongolia, Bor-Uzuur

TSE 2008 Mongolia, Bor-Uzuur

TSE 2008 Mongolia, Bor-Uzuur

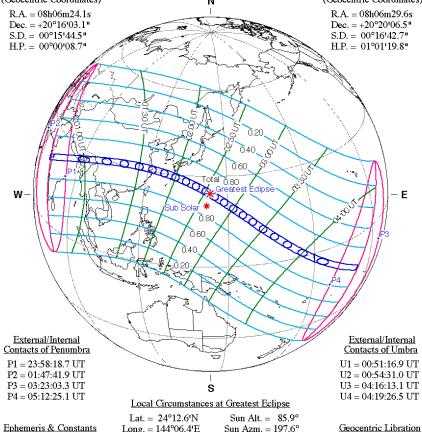
TSE 2008 Mongolia, Bor-Uzuur

TSE 2008 Mongolia, Bor-Uzuur

TSE 2008 Mongolia, Bor-Uzuur

Ulaanbaatar Astronomical observatory (UAO)

Total Solar Eclipse of 2009 Jul 22


Geocentric Conjunction = 02:33:04.4 UT J.D. = 2455034.606301 J.D. = 2455034.607884 Greatest Eclipse = 02:35:21.1 UT

> Gamma = 0.0696Eclipse Magnitude = 1.0799

Saros Series = 136

Member = 37 of 71

Ephemeris & Constants Eph. = Newcomb/ILE

 $\Delta T = 66.2 \text{ s}$ k1 = 0.2724880k2 = 0.2722810 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

Long. = $144^{\circ}06.4^{\circ}E$ Sun Azm. = 197.6° (Optical + Physical) Path Width = 258.4 kmDuration = 06m38.8s

 $1 = 0.66^{\circ}$ $b = -0.09^{\circ}$

1000 2000 3000 4000 5000 Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html

Total Solar Eclipse of 2010 Jul 11

Geocentric Conjunction = 19:50:57.5 UT J.D. = 2455389.327055 Greatest Eclipse = 19:33:33.6 UT J.D. = 2455389.314973

> Eclipse Magnitude = 1.0580 Gamma = -0.6789

Saros Series = 146 Member = 27 of 76Sun at Greatest Eclipse Moon at Greatest Eclipse (Geocentric Coordinates) (Geocentric Coordinates) R.A. = 07h23m57.6sR.A. = 07h23m15.8s $Dec. = +22^{\circ}02^{\circ}11.0^{\circ}$ $Dec. = +21^{\circ}22^{\circ}28.7^{\circ}$ $S.D. = 00^{\circ}15^{1}43.9^{11}$ $S.D. = 00^{\circ}16^{\circ}26.6^{\circ}$ $H.P. = 00^{\circ}00^{\circ}08.7$ " $H.P. = 01^{\circ}00'20.9"$ 0.60 0.80 00000 Greatest Edipse E 0.80 0.60 External/Internal External/Internal Contacts of Penumbra Contacts of Umbra P1 = 17:09:40.5 UT U1 = 18:15:15.3 UT P4 = 21:57:15.8 UTU2 = 18:18:33.1 UTU3 = 20:48:20.6 UTU4 = 20:51:42.2 UTLocal Circumstances at Greatest Eclipse $Lat. = 19^{\circ}45.7^{\circ}S$ Sun Alt. = 47.1° Ephemeris & Constants Long. = 121°52.9'W Geocentric Libration Sun Azm. = 13.5° (Optical + Physical) Eph. = Newcomb/ILE Path Width = 258.7 kmDuration = 05m20.2s $1 = -3.24^{\circ}$ $\Delta T = 67.1 \text{ s}$ $b = 0.86^{\circ}$

k1 = 0.2724880

 $c = 10.53^{\circ}$ Brown Lun. No. = 1071

 $\Delta b = 0.0^{\text{u}}$ $\Delta l = 0.0^{\text{u}}$

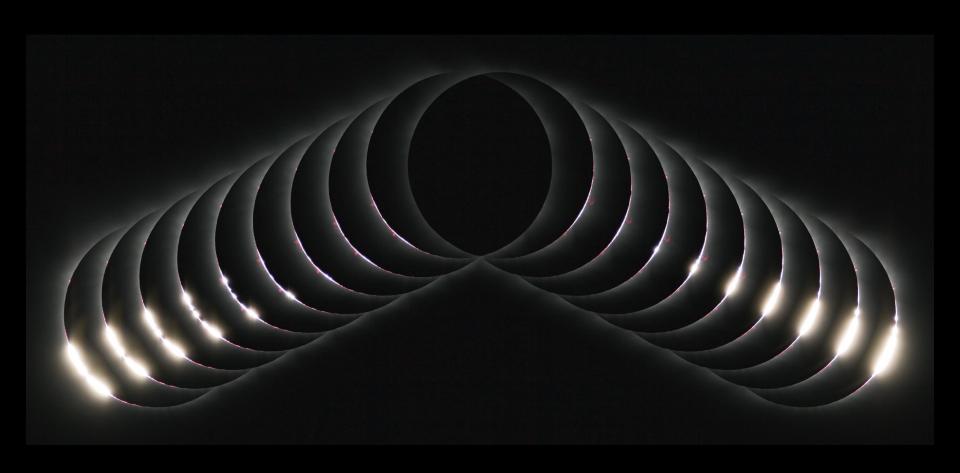
k2 = 0.2722810

1000 2000 3000 4000 5000 Kilometers

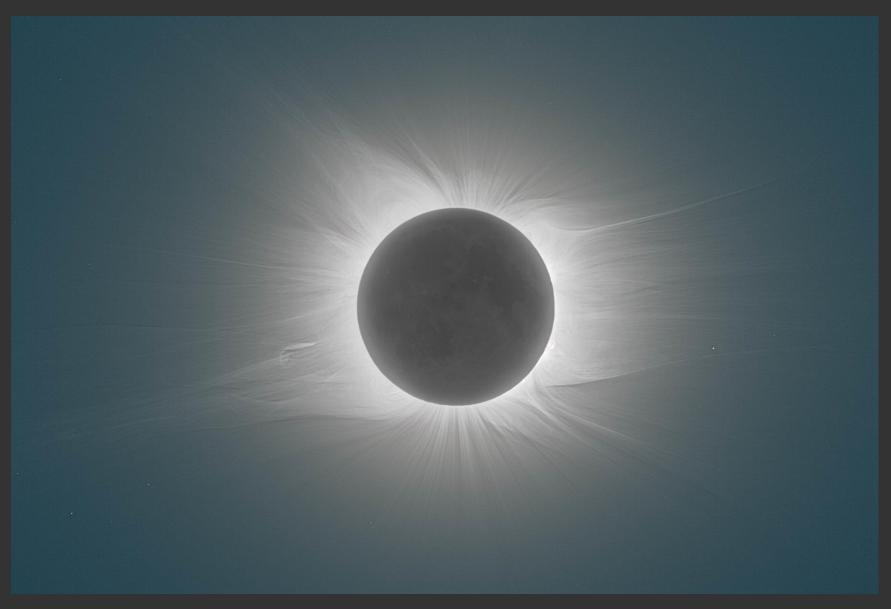
 $c = 6.62^{\circ}$

Brown Lun. No. = 1083

F. Espenak, NASA's GSFC - Fri, Jul 2, sunearth.gsfc.nasa.gov/eclipse/eclipse.html


TSE 2009 China, Xianren Tancun, Yellow Mountain

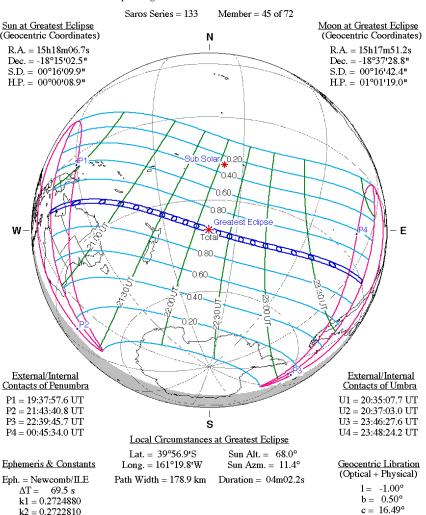
TSE 2009 China, Xianren Tancun / TSE 2010 French Polynesia, Hikueru



TSE 2010 French Polynesia, Hao

Thomas Baader, Germany

TSE 2010 French Polynesia, Hao


Thomas Baader, Germany

Total Solar Eclipse of 2012 Nov 13

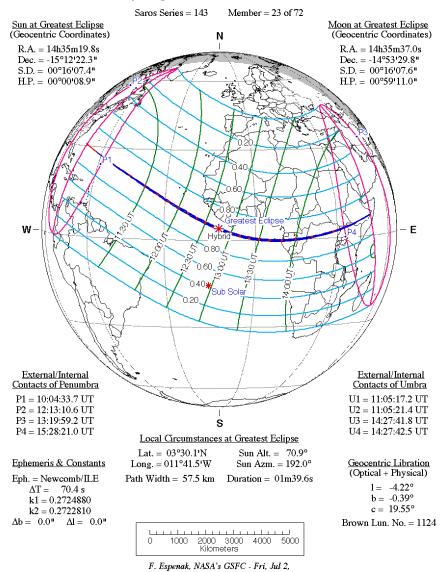
Geocentric Conjunction = 22:18:04.3 UT J.D. = 2456245.429217 Greatest Eclipse = 22:11:48.0 UT J.D. = 2456245.424861

Eclipse Magnitude = 1.0500

Gamma = -0.3718

Kilometers

F. Espenak, NASA's GSFC - Fri, Jul 2,


sunearth.gsfc.nasa.gov/eclipse/eclipse.html

1000 2000 3000 4000 5000

 $\Delta b = 0.0$ " $\Delta l = 0.0$ "

Hybrid Solar Eclipse of 2013 Nov 03

Eclipse Magnitude = 1.0159 Gamma = 0.3273

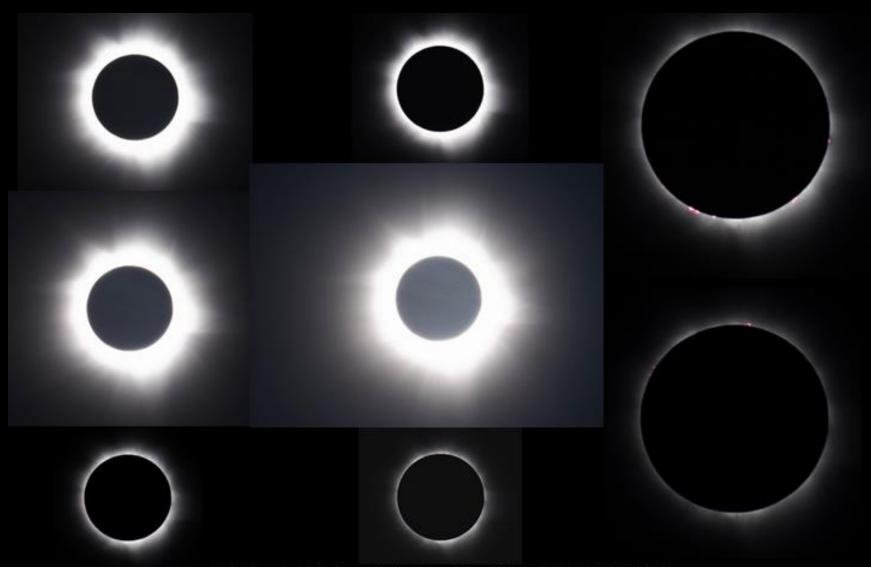
sunearth.gsfc.nasa.gov/eclipse/eclipse.html

Brown Lun. No. = 1112

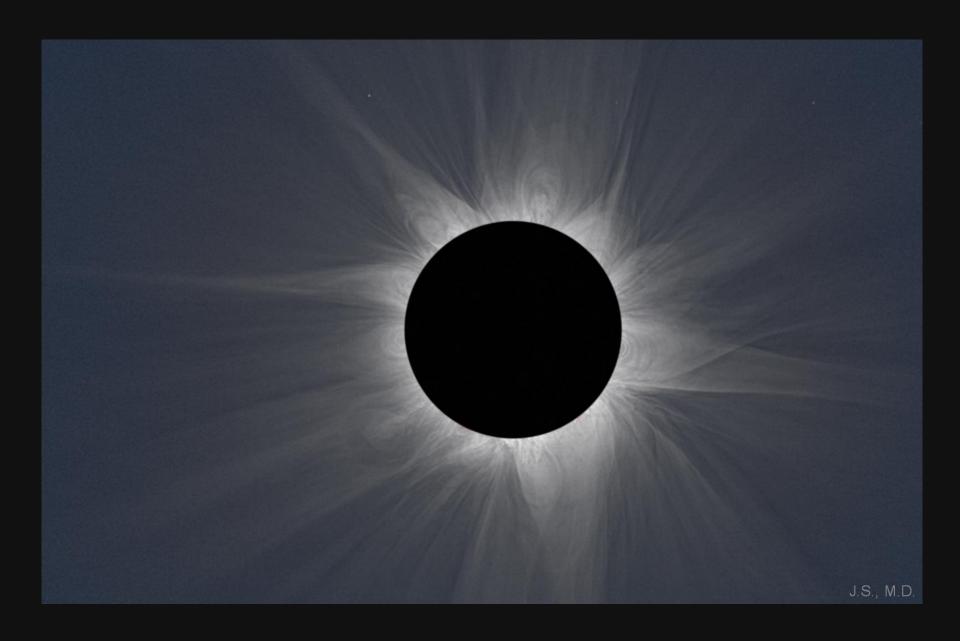
TSE 2012 Australia

- Main destination The photography to Solar Corona at tothality in different exposure time (1/2000s-2s) from paralactical mount (Jan Zahajsky) for later processing.
- 2 lences, 500/8, 1000/10
- Calibration, Dark frames, Flat fields etc.

TSE 2012 Australia, Queensland, near Adams Dam



Lokalita: Austrálie, Queensland, Adams Dam 13.11.2012 20:37 - 20:39 UTC


Fotosparát: Canon EOS 350D Objektiv: 3M-5A 500mm/f8

Paralaktická montáž: Vixen Photo Guider GP2 - zapůjčil Jan Zahajský

TSE 2012

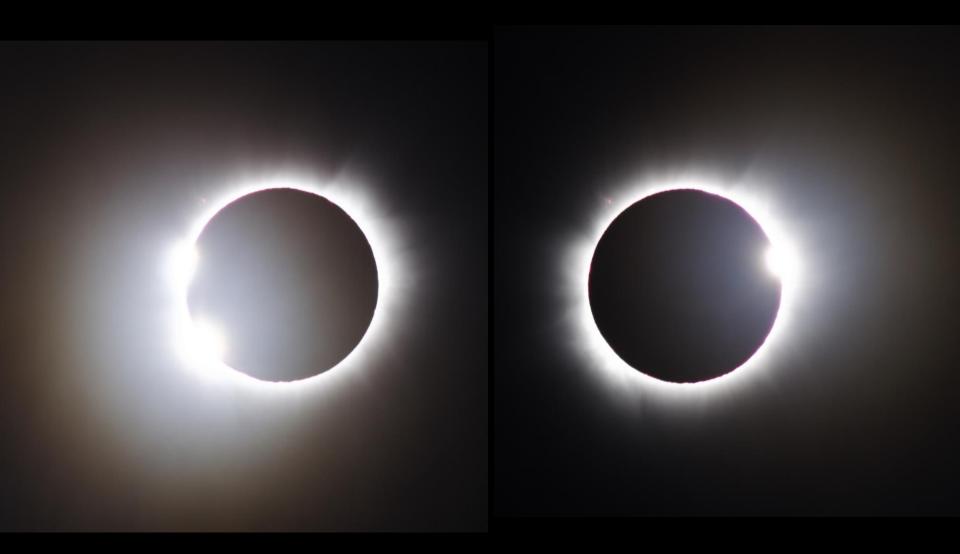
Total Solar Eclipse 2012

© 2012 Jan Sládeček © 2013 Miloslav Druckmülle

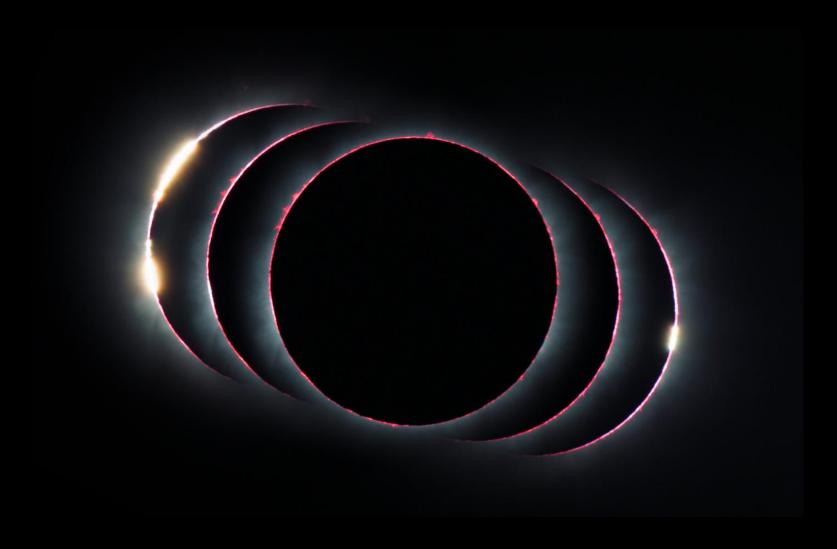
Totality of HSE 2014

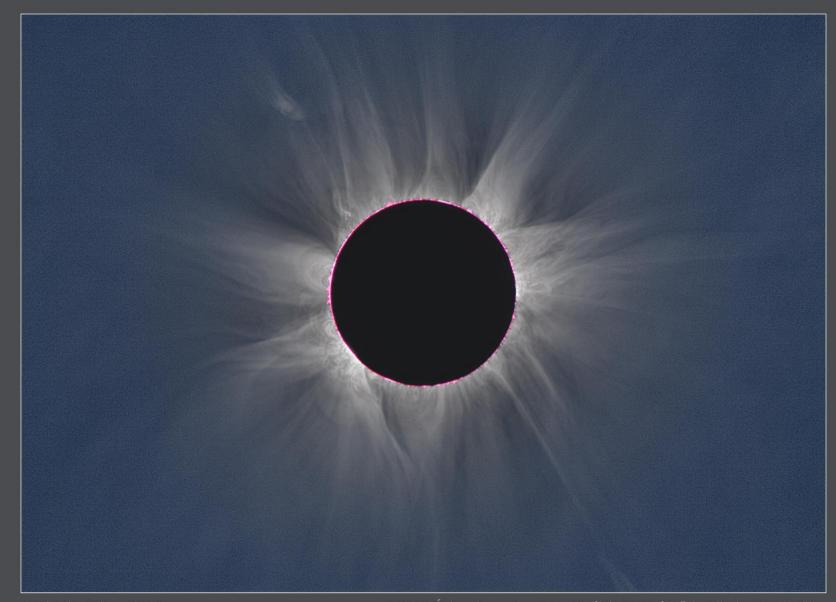
HSE 2013, Uganda, Pockwero

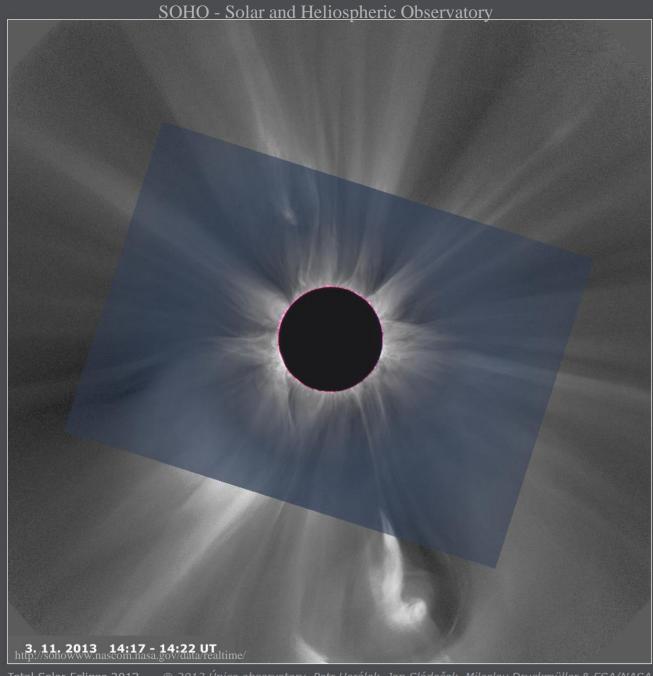
HSE 2013, Uganda, Pockwero



HSE 2013, Uganda, Pockwero


HSE 2013, Uganda, Pockwero

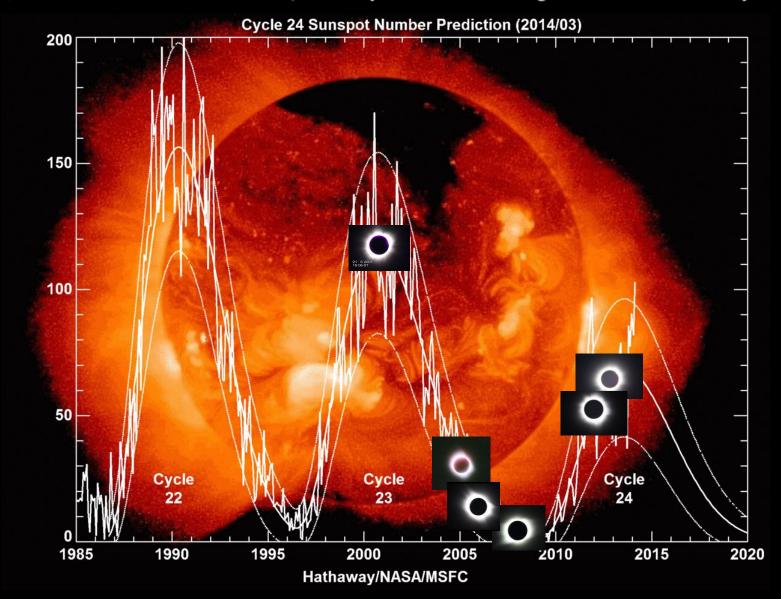


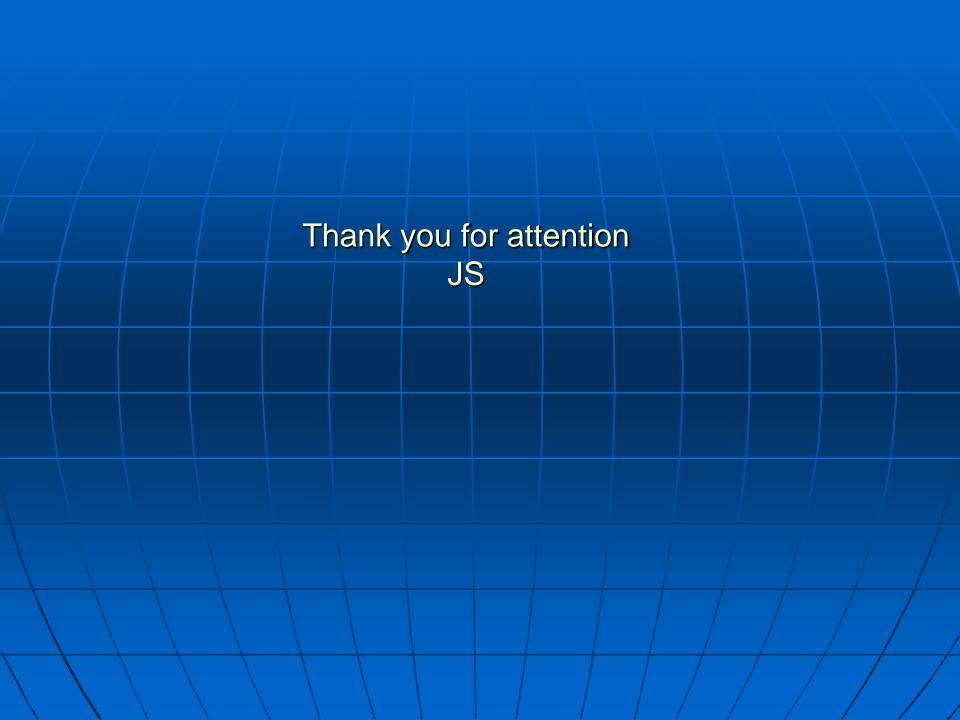

Petr Horalek http://www.astronom.cz/horalek/?cat=4

Picture after procession, total phase of HSE 2013 Uganda

Total Solar Eclipse 2013

© 2013 Úpice observatory, Petr Horálek, Jan Sládeček, Miloslav Druckmüller


Total Solar Eclipse 2013 © 2013 Úpice observatory, Petr Horálek, Jan Sládeček, Miloslav Druckmüller & ESA/NASA


Petr Horalek http://www.astronom.cz/horalek/?cat=4

The solar cycle (solar magnetic activity Schwabe/Wolf cycle)

The periodic change in the <u>Sun</u>'s activity and appearance (visible in changes in the number of <u>sunspots</u>, flares, and other visible manifestations). Solar cycles have an average duration of about 11 years.

http://en.wikipedia.org/wiki/Solar_cycle

